Finite Model Approximations for Partially Observed Markov Decision Processes with Discounted Cost

نویسندگان

  • Naci Saldi
  • Serdar Yüksel
  • Tamás Linder
چکیده

We consider finite model approximations of discretetime partially observed Markov decision processes (POMDPs) under the discounted cost criterion. After converting the original partially observed stochastic control problem to a fully observed one on the belief space, the finite models are obtained through the uniform quantization of the state and action spaces of the belief space Markov decision process (MDP). Under mild assumptions on the components of the original model, it is established that the policies obtained from these finite models are nearly optimal for the belief space MDP, and so, for the original partially observed problem. The assumptions essentially require that the belief space MDP satisfies a mild weak continuity condition. We provide examples and introduce explicit approximation procedures for the quantization of the set of probability measures on the state space of POMDP (i.e., belief space).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Asymptotic Optimality of Finite Approximations to Markov Decision Processes with Borel Spaces

Abstract. Calculating optimal policies is known to be computationally difficult for Markov decision processes with Borel state and action spaces and for partially observed Markov decision processes even with finite state and action spaces. This paper studies finite-state approximations of discrete time Markov decision processes with Borel state and action spaces, for both discounted and average...

متن کامل

Denumerable Constrained Markov Decision Problems and Finite Approximations Denumerable Constrained Markov Decision Problems and Finite Approximations

The purpose of this paper is two fold. First to establish the Theory of discounted constrained Markov Decision Processes with a countable state and action spaces with general multi-chain structure. Second, to introduce nite approximation methods. We deene the occupation measures and obtain properties of the set of all achievable occupation measures under the diierent admissible policies. We est...

متن کامل

Title of dissertation : LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES

Title of dissertation: LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES Abraham Thomas, Doctor of Philosophy, 2009 Dissertation directed by: Professor Steven Marcus Department of Electrical and Computer Engineering We propose various computational schemes for solving Partially Observable Markov Decision Processes with the finite stage additive cost and infinite horizon discounted cost criterio...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Denumerable Constrained Markov Decision Processes and Finite Approximations

The purpose of this paper is two fold. First to establish the Theory of discounted constrained Markov Decision Processes with a countable state and action spaces with general multi-chain structure. Second, to introduce nite approximation methods. We deene the occupation measures and obtain properties of the set of all achievable occupation measures under the diierent admissible policies. We est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07009  شماره 

صفحات  -

تاریخ انتشار 2017